

Venus Exploration to 2050

James Cutts¹, Robert Grimm², Martha Gilmores and members of the VEXAG Steering Committee

Planetary Science Vision 2050 Workshop

Feb 27 to March 1, 2017

Jet Propulsion Lab, California Institute of Technology, Pasadena, California
 Southwest Research Institute, Boulder Colorado
 Wesleyan University, Middletown, Connecticut

Venus and Earth – Planetary Siblings

Venus – Recent and on going Missions

- Orbit insertion April 2006.
- Mission ended December 2014

- Orbit insertion Dec 2015
- Five year mission is now planned

 Both missions primarily focus on investigations of the Venus atmosphere

Proposed NASA and ESA Venus Missions

Landed Missions – Past and Proposed

~40 Years

VEGA (USSR, 1985)

Venera D (Russia, 2026 launch)

NASA New Frontiers 3 (2010) SAGE (JPL)

NASA New Frontiers 4, 2017)

VEXAG Venus Exploration Documents

J. Cutts et. al.

These documents, completed in May 2014, provide the essential framework for a program that can be executed by 2050

All available on the VEXAG website; http://www.lpi.usra.edu/vexag/

VEXAG Goals and Objectives for Venus Exploration

Atmosphere

Surface & Interior

System Interactions & Water

- How did the atmosphere form and evolve?
- What controls the atmospheric superrotation and greenhouse?
- What is the impact of clouds on climate and habitability?

- How is heat released from the interior and has the global geodynamic style changed with time?
- What are the contemporary rates of volcanism and tectonism?
- How did Venus differentiate and evolve over time?

- Was surface water ever present?
- What role has the greenhouse had on climate history?
- How have the interior, surface, and atmosphere interacted as a coupled system over time?

Strategies for Future Venus Exploration

- Apply instrument technologies developed for other planetary destinations on traditional Venus platforms (orbiters, probes, short duration landers)
- Exploit miniaturization of instrumentation and spacecraft such as cubesats including experiments requiring multiple spacecraft
- Deploy experiments on long lived aerial platforms (balloons or airplanes) operating in cooler parts of the atmosphere
- Develop Venus-specific techniques exploiting unique Venus characteristics such as dense atmosphere and near isothermal surface regions
- Develop high temperature technologies to enable long duration surface and near-surface exploration – NASA HotTech program initiated in FY16

Technology Plan

Near-Term, in priority order

- New thermal protection systems (TPS).
- High-temperature subsystems and components for long-duration (months) surface operations.
- Aerial platforms for similar long-duration operations in the atmosphere
- Deep-space optical communications

Mid- and Far-Term, in priority order

- Advanced power and cooling technology for long-duration surface operations.
- Advanced descent and landing

Currently funded No NASA PSD funding at this time

Flyby and Orbital Missions Proposed Roadmap

Venus Gravity Assist Science Opportunities (VeGASO) Bepi Columbo, Solar Orbiter, Solar Probe Plus

Humans to MarsEVME or EMVE trajectories

Cubesat and SmallSat Opportunities

Orbital Remote Sensing

- Radar
- IR imaging
- Gravity
- Topography
 Near Term

Venus Climate Mission

Venus Aeronomy

Mid Term

Far Term

J. Cutts et. al.

Aerial Mobility Proposed Roadmap

J. Cutts et. al.

Explorer

Planetary Science Vision 2050 -10

Surface Exploration Proposed Roadmap

Radioisotope Power System Active cooling

Rover with hybrid approach to environmental survival

Passively cooled Venus Lander Lifetime 2-5 hours

High temperature electronics

Long-lived In Situ Solar System Explorer (LISSE) electronics

High temperature

Surface Seismological stations

Geophysical Network

Far Term

Near Term

J. Cutts et. al.

Mid Term

Other Venus Contributions to PSV 2050

POSTER TALKS (Title/Author/SESSION)

Venus Sample Return by E Shibata (Purdue U)
 POLICY PATHWAYS AND TECHNIQUES SESSION

PRINT ONLY (Title/Author/SESSION)

- Venera-D by David Senske WORKINGS
- Venus Aerial Platforms by James Cutts
 POLICY PATHWAYS AND TECHNIQUES SESSION
- Power Technology by S. Surampudi
 POLICY PATHWAYS AND TECHNIQUES SESSION
- Humans at Venus by Noam Izenberg
 POLICY PATHWAYS AND TECHNIQUES SESSION
- PS Vision 2015 Sanjay Limaye and Kandis Jessup WORKINGs

Whither Venus?

- Community interest in Discovery missions still high; Both VERITAS and DAVINCI were "selectable." Future proposals can be expected.
- New Frontiers Venus In Situ Explorer (VISE) is the next competitive opportunity for Venus
- Foreign missions with and without international collaborations (Akatsuki, Venera-D, EnVision), are an essential part of future planning
- Low cost, small satellite missions can take advantage of Venus' proximity to Earth and produce important new science
- Venus flagship was endorsed in 2013 Decadal Survey. This will be updated for the 2022 Decadal with new capabilities.
- Investments in technology are vital to further progress leading to long duration surface and near surface missions and surface sample return
- A U.S. led mission is needed soon to engage the remaining pool of Magellan experience and invigorate the next generation of US Venus scientists.

For more information visit http://www.lpi.usra.edu/vexag/